
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/222562869

Sentence	generation	for	artificial	brains:	A
glocal	similarity-matching	approach

ARTICLE		in		NEUROCOMPUTING	·	DECEMBER	2010

Impact	Factor:	2.08	·	DOI:	10.1016/j.neucom.2009.11.053	·	Source:	DBLP

CITATIONS

3

READS

89

6	AUTHORS,	INCLUDING:

Linas	Vepstas

Novamont	S.p.A.

25	PUBLICATIONS			248	CITATIONS			

SEE	PROFILE

Available	from:	Linas	Vepstas

Retrieved	on:	14	February	2016

https://www.researchgate.net/publication/222562869_Sentence_generation_for_artificial_brains_A_glocal_similarity-matching_approach?enrichId=rgreq-0d24a076-bde9-4f80-832f-3d0ac985ad18&enrichSource=Y292ZXJQYWdlOzIyMjU2Mjg2OTtBUzoxMDE1MTI1MDgzNDYzNzlAMTQwMTIxMzg3NjUxMA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/222562869_Sentence_generation_for_artificial_brains_A_glocal_similarity-matching_approach?enrichId=rgreq-0d24a076-bde9-4f80-832f-3d0ac985ad18&enrichSource=Y292ZXJQYWdlOzIyMjU2Mjg2OTtBUzoxMDE1MTI1MDgzNDYzNzlAMTQwMTIxMzg3NjUxMA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-0d24a076-bde9-4f80-832f-3d0ac985ad18&enrichSource=Y292ZXJQYWdlOzIyMjU2Mjg2OTtBUzoxMDE1MTI1MDgzNDYzNzlAMTQwMTIxMzg3NjUxMA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Linas_Vepstas?enrichId=rgreq-0d24a076-bde9-4f80-832f-3d0ac985ad18&enrichSource=Y292ZXJQYWdlOzIyMjU2Mjg2OTtBUzoxMDE1MTI1MDgzNDYzNzlAMTQwMTIxMzg3NjUxMA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Linas_Vepstas?enrichId=rgreq-0d24a076-bde9-4f80-832f-3d0ac985ad18&enrichSource=Y292ZXJQYWdlOzIyMjU2Mjg2OTtBUzoxMDE1MTI1MDgzNDYzNzlAMTQwMTIxMzg3NjUxMA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Novamont_SpA?enrichId=rgreq-0d24a076-bde9-4f80-832f-3d0ac985ad18&enrichSource=Y292ZXJQYWdlOzIyMjU2Mjg2OTtBUzoxMDE1MTI1MDgzNDYzNzlAMTQwMTIxMzg3NjUxMA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Linas_Vepstas?enrichId=rgreq-0d24a076-bde9-4f80-832f-3d0ac985ad18&enrichSource=Y292ZXJQYWdlOzIyMjU2Mjg2OTtBUzoxMDE1MTI1MDgzNDYzNzlAMTQwMTIxMzg3NjUxMA%3D%3D&el=1_x_7

Neurocomputing 74 (2010) 95–103
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/neucom
Sentence generation for artificial brains: A glocal
similarity-matching approach
Ruiting Lian a,n, Ben Goertzel a,b, Rui Liu b, Michael Ross a, Murilo Queiroz b, Linas Vepstas b

a Fujian Key Lab of the Brain-like Intelligent Systems, Xiamen University, Xiamen, China
b Novamente LLC, 1405 Bernerd Place, Rockville MD 20851
a r t i c l e i n f o

Available online 14 July 2010

Keywords:

Sentence generation

Language generation

Artificial brains
12/$ - see front matter & 2010 Elsevier B.V. A

016/j.neucom.2009.11.053

esponding author.

ail address: lianlian1022@gmail.com (R. Lian)
a b s t r a c t

A novel approach to sentence generation – SegSim, Sentence Generation by Similarity Matching – is

outlined, and is argued to possess a number of desirable properties making it plausible as a model of

sentence generation in the human brain, and useful as a guide for creating sentence generation

components within artificial brains. The crux of the approach is to do as much as possible via similarity

matching against a large knowledge base of previously comprehended sentences, rather than via

complex algorithmic operations. To get the most out of this sort of matching, a certain amount of

relatively simple rule-based processing needs to be done in pre- and post-processing steps. However,

complex algorithmic operations are required only for the generation of sentences representing complex

or unfamiliar thoughts. This, it is suggested, is the sort of sentence generation approach that makes

sense in a system that – like a real or artificial brain – combines the capability for effective local

application of logical rules with the capability for massively parallel, scalable, inexpensive similarity

matching.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The process of language generation involves a series of stages
[3,4], which may be defined in various ways, such as:
�
 Content determination: figuring out what needs to be said in a
given context;

�
 Discourse planning: overall organization of the information to

be communicated;

�
 Lexicalization: assigning words to concepts;

�
 Reference generation: linking words in the generated sentences

using pronouns and other kinds of reference;

�
 Syntactic and morphological realization: the generation of

sentences via a process inverse to parsing, representing the
information gathered in the above phases; and

�
 Phonological or orthographic realization: turning the above into

spoken or written words, complete with timing (in the spoken
case), punctuation (in the written case), etc.

All of these stages are important, and there is a nontrivial
amount of feedback among them. However, there is also a
significant amount of autonomy, such that it often makes sense to
ll rights reserved.

.

analyze each one separately and then tease out its interactions
with the other stages. Here we focus on the single stage of
‘‘syntactic and morphological realization,’’ which we refer to for
simplicity as ‘‘sentence generation’’ (taking a slight terminological
liberty, as ‘‘sentence fragment generation’’ is also included here).

Sentence generation may be achieved in many ways; the
variety of algorithms in the literature [5–8] barely scratch the
surface of the scope of possibilities. However, when one thinks
about how sentence generation might most feasibly be achieved
in a brain or brain-like system, the range of possibilities narrows
somewhat. Brains are not particularly good at carrying out
complex serial algorithms requiring explicit exploration of large
search trees. On the other hand, they are very good at carrying out
approximate similarity matching of target items against large sets
of remembered items. Thus, the most neurally feasible sentence
generation approach would be the one that eschews complex
algorithmic search processes whenever possible, in the favor of
massively parallel similarity matching.

But how might this work? Our approach, which we label
SegSim, is relatively simple and is given as follows:
1.
 The NL generation system stores a large set of pairs of the form
(semantic structure, syntactic/morphological realization);
2.
 When it is given a new semantic structure to express, it first
breaks this semantic structure into natural parts, using a set of
simple syntactic-semantic rules;

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2009.11.053
mailto:lianlian1022@gmail.com
dx.doi.org/10.1016/j.neucom.2009.11.053

R. Lian et al. / Neurocomputing 74 (2010) 95–10396
3.
 For each of these parts, it then matches the parts against its
memory to find relevant pairs (which may be full or partial
matches), and uses these pairs to generate a set of syntactic
realizations (which may be sentences or sentence fragments);
4.
 If the matching has failed, then (a) it returns to Step 2 and
carries out the breakdown into parts again. But if this has
happened too many times, then (b) it recourses to a different
algorithm (most likely a search or optimization-based ap-
proach, which is more computationally costly) to determine
the syntactic realization of the part in question;
5.
 If the above step generated multiple fragments, they are pieced
together, and a certain rating function is used to judge if this
has been done adequately (using criteria of grammaticality
and expected comprehensibility, among others). If this fails,
then Step 3 is tried again on one or more of the parts; or Step 2
is tried again. (Note that one option for piecing the fragments
together is to string together a number of different sentences;
but this may not be judged optimal by the rating function.);
and
6.
 Finally, a ‘‘cleanup’’ phase is conducted, in which correct
morphological forms are inserted, and articles and certain
other ‘‘function words’’ are inserted.

Here we describe the SegSim approach from several perspec-
tives, first presenting a few thoughts on how some process
resembling SegSim might be realized in the human brain, and
then describing a computational implementation of the SegSim
approach that we have created, making use of several open-
source computational linguistics tools. We also briefly describe
how one would go about creating a connectionist implementation
of SegSim, which might serve as a passable model of relevant
parts of the brain as well as a useful computational system. Finally
we give some concrete examples of sentences generated by our
(non-connectionist) implementation of SegSim, which we call
SegSim Prime.

While it is interesting to explore SegSim on its own, the real
value of the approach lies in its easy integration with other
cognitive and neural processes. SegSim was created partly in
order to explain sentence generation in the human brain, and
more critically in order to provide a practical approach to
sentence generation in artificial brains. NLGen was created as
part of the OpenCog AI architecture [2], which is heavily cognitive
science inspired but does not seek to emulate the lower-level
structures and dynamics of the brain; but it is now being
developed in coordination with Xiamen University’s Conscious
Robot Project, which incorporates an effort to create a somewhat
more realistic artificial brain. At the end of the paper we will
briefly describe the integration of NLGen with these systems.

We emphasize throughout one of the key conceptual princi-
ples embodied by the SegSim approach, which is glocality [1]; the
synthesis of global and local memory and processing. Glocality is
embodied in the synergy between Steps {2 and 4} and 3 in the
above algorithmic outline.

In Step 3, a widely distributed global memory and processing
approach is utilized, in which a semantic structure is matched
against a large body of previously encountered (semantic
structure, syntactic/morphological realization) pairs. In Steps 2
and 4, a localized memory and processing approach is utilized,
involving algorithmic application of explicitly stored grammatical
rules. We suggest that this harmonious interoperation of these
different types of memory is a critical aspect of sentence
generation. Each localized memory item (each semantic sub-
structure created in Step 2) must serve as a key for unlocking a
globally distributed collection of memories (previously inter-
preted sentences).
2. Sentence generation in the brain

Contemporary neuroscience is not yet at the level where it can
tell us exactly how sentence generation occurs in the brain.
However, by piecing together knowledge about sentence genera-
tion in particular with knowledge about brain function in general,
it is possible to formulate a reasonable set of conjectures
regarding the broad manner in which neural sentence generation
most likely occurs. In this section we will review some of the
relevant facts from neuroscience, and use them to drive some
conjectures (Fig. 1).

2.1. Known and hypothesized neuroscience of sentence generation

Sentence generation is a complex process involving multiple
complex dynamics in multiple regions of the brain. However,
there is a significant evidence [9] that a dominant role is played
by area BA (Brodmann Area) 45 within the inferior frontal gyrus, a
brain region sometimes grouped with BA 44 into ‘‘Broca’s Area.’’
This brain region is differentially activated when individuals need
to express content syntactically rather than merely using
disorganized or ordered sets of words. BA 45 is also involved
with a variety of other reasoning functions including metapho-
rical and some reasoning processes (and also with some
apparently unrelated processes including identification of familiar
smells). However, other studies [10] have found that BA 44/47 are
apparently involved with syntax processing related to inflections,
whereas BA 45 is not. So it is not yet clear exactly how the various
functionalities related to sentence generation are distributed
among these nearby brain areas.

There is also evidence [11] that the same brain regions at or
near areas BA 6, 9, 44, 45 and 46 are responsible for both working-
memory and long-term-memory access. This is consistent with
the notion that sentence generation involves dynamic working-
memory/long-term-memory integration.

Fiebach and coworkers [12,13] have proposed a unifying
neurological model explaining the role of Broca’s area and the
ventral premotor cortex in the general predictive processing of
hierarchical sequential information. In this model, the brain
carries out syntax processing via utilizing more generic mechan-
isms whose overall purpose is the prediction of sequential data
that has hierarchical structure. Sentence generation may be
viewed as an instance of a prediction problem, in that, given a
set of semantic content; one may pose the prediction problem of
predicting which word should come next in the generated
sentence.

They propose the existence of a general neural mechanism for
binding the temporally segregated sub-entities of a series of
events into a single unified entity. The paradigm case of this in
language processing is the grouping of a series of words into a
phrase or clause. They then propose some quite specific
characteristics of sentence processing as carried out by these
brain regions:

These results suggest PMv/Broca involvement whenever the
structure of a sentence deviates from a preferred structural
template (defined according to grammatical rules and simplicity
considerations). Within this region, distinct subregions appear to
respond more specifically to different kinds of deviations—

indicating they may be involved in different aspects of on-line
syntactic processing.

We suggest that (a) PMv/Broca region is involved in analyzing
sentences according to grammatical rules, and that (b) the
complexity of rule-based processes carried out in the PMv/
Broca region varies along a posterior-to-anterior gradient.
More posterior subregions perform an initial check concerning

Fig. 1. Framework of NLGen.

R. Lian et al. / Neurocomputing 74 (2010) 95–103 97
the compatibility of the input with grammatical rules, which
might be best described as mapping the input onto structural
templates of simple and frequent sentence structures. More
anterior regions (BA 44 and 44/45) utilize these rules to adjust
syntactic predictions when processing complex sentences and
to relate grammatically more complex sentence structures
back to the simplicity-based structural templates.

While phrased largely in the language of sentence comprehen-
sion, these proposals are equally relevant to generation, if one
assumes a perspective (like the one we advocate below) in which
generation involves beginning with semantic content and then
producing a sentence conditioned on that semantic content, via
iteratively predicting the most likely word in the sentence based
on the semantic content and the previous words. In the context of
sentence generation, the qualitative hypothesis we may draw
from these ideas is that:
�
 Generation of sentences according to simple templates may be
its own coherent process and
�
 Generation of sentences that deviate from simple templates
may involve a separate, coupled process that relies on a variety
of different subprocesses, handling sentences of differing
degree and type of complexity.

While we consider this an important and stimulating hypoth-
esis, our inclination is to push back on the breadth of use of
‘‘rules’’ and ‘‘templates’’ here. Rather than relying primarily on
explicit sentence-structure rules templates, we suggest, the brain
may combine the use of simple explicit templates, with a different
sort of process that involves similarity-matching against a large
pool of already-understood example sentences stored in long-
term memory. This alternate interpretation appears equally
harmonious with the empirical results that Fiebach et al. draw on.

We do not wish to overstate our point here: it seems likely to
us that the brain’s language processing dynamics does involve
some use of abstract rules and representations, especially in the
processing of complex and unfamiliar sentences. Also, we are not
advocating a simplistic similarity matching on the level of

R. Lian et al. / Neurocomputing 74 (2010) 95–10398
phonemes, but rather a subtler similarity matching on the level of
semantic and syntactic relationships.

But, a key conceptual point we wish to emphasize is that the
brain’s architecture is innately better suited for massively parallel
similarity matching than for complex recursive abstraction [25].
This makes it natural to hypothesize that the brain should rely on
simple similarity matching approaches wherever possible (in
language generation and elsewhere). With this in mind it is
interesting to explore how far one can go in language generation
via relatively simple similarity matching approaches; and the
answer we have arrived at via our work with NLGen is: rather far!

So, in our hypothesis, introducing the language of glocal memory
theory [1], the regions within PMv/Broca that Fieback et al. interpet to
contain complex rules for handling complex sentence structures, may
actually serve as ‘‘keys’’ that open a ‘‘lock’’ consisting of a set of
long-term memories of sentence/interpretation pairs matching the
template. That is, the role of PMv/Broca may be twofold:
1.
 To apply a small set of template rules for interpreting very
simple, frequently encountered syntax/semantics correspon-
dences;
2.
 To handle more complex constructs via using these templates
to guide the matching of sentence-fragments or semantic
information against a large corpus of examples stored in LTM;
and
3.
 To handle even more complex or unfamiliar constructs via
invoking some sort of more algorithmic, recursive sentence
generation process.

2.2. Connectionist models of sentence generation

Largely separately from the above ideas and observations from
neuroscience, a number of AI researchers have proposed connec-
tionist models of sentence generation and comprehension.

For instance, Kalita and Shastri [14,15] created a relatively
simplistic system focused on the problem of producing the words
in a subject–verb–object sentence given the thematic role fillers
and indications of the desired voice and tense. Their approach
seems unlikely to be extendable to sentences with recursive
structure. Gasser’s Connectionist Lexical Memory [16] is some-
what more ambitious, using a system in which bindings to
syntactic roles are encoded with synchronized firing, but also
does not produce recursive structures or handle long-distance
dependencies. Miikkulainen [17] presented neural networks
capable of producing multi-clause sentences based on a slot filler
representation of its clauses, but these networks also seem to lack
general generative capability, though their generality could
possibly be extended via various improvements.

Perhaps the most ambitious connectionist sentence generation
system is Rodhe’s [18] Connectionist Sentence Comprehension
and Production (CSCP) model. In Rohde’s model, semantic
relationship sets are represented using sets of propositions, which
are encoded using distributed, featural representations. One
portion of the neural network, the semantic system, is trained
via the requirement to answer fill-in-the-blank questions about
the propositions, and thus learns to compress a sequence of these
propositions into a single, static representation of the meaning
they embody. Another portion of the network handles compre-
hension, via learning to receive a sequence of words, encoded in a
distributed phonological representation, and to output a repre-
sentation of the sentence meaning in a format interpretable by
the semantic system. The system is trained to learn the grammar;
and using cases in which the meaning is provided in advance, it
learns to make accurate predictions of which word will occur next
in a sentence, using a combination of syntactic and semantic
information. Sentence generation is then done by explicitly
reversing comprehension: In order to generate a sentence, the
neurons representing semantic meaning are clamped to fixed
values representing the content to be expressed, and the network
is asked to successively predict the words in the sentence.

We find Rohde’s work impressive and conceptually agreeable, and
consider our own work to be in a similar spirit. However, we have
come at the problem from a slightly different direction, being
motivated in our own work largely by the desire to create a
maximally functional sentence generation system for practical
utilization in the context of integrated artificial brains and AI systems.
Thus, the system we have crafted has adopted a somewhat different
architecture, driven partly by theoretical considerations and partly by
the practicalities of working with existing (non-connectionist, but
highly functional) computational linguistics software. This work has
then led us to some different suggestions regarding how one might
create connectionist sentence generation systems, which we will
discuss a little later on.

Comparing Rohde’s ideas to the hypotheses of Fiebach et al.
reviewed above, we note here the absence of explicit templates
embodying syntactic structures. Rather, one simply trains net-
works with (sentence, interpretation) pairs, and then the network
learns the appropriate mapping. Comprehension and generation
are then carried out by clamping inputs corresponding to the
sentence or the interpretation respectively (to simplify just a bit).
This is a purely distributed model, highly elegant in nature.
However, we suggest that Fiebach et al. may have something
valuable in their suggestion of simple template rules coupled with
alternate processing for handling more complex cases. In the
glocal approach we outline below, simple grammatical principles
are used to break sentences into chunks, which are then
remembered in a manner that facilitates rapid matching against
fragments of semantic relationship-sets in need of expression—an
approach which combines a simple, localized template-based
approach like that to which Fiebach et al. allude, with a
distributed, similarity-matching based approach as Rohde uses.
2.3. Large-scale similarity matching as a key aspect of brainlike

algorithms

Rodhe’s excellent work showcases one of the great strengths of
recurrent neural network architectures and of the human brain,
noted above: the capability for rapid, approximate similarity
matching across large knowledge bases. Rohde’s network
achieves this via particular learning algorithms, and Hopfield
nets and their descendants [19] achieve the same thing via
different algorithms. In both cases the core message is the same:
these sorts of systems are very good at solving problems of the
form ‘‘Given a query Q and a large number of stored memories
find the stored memories that best match Q.’’

The brain very effectively deploys its massively parallel
architecture to achieve this sort of matching efficiently. On the
other hand, implementing neural nets on von Neumann ma-
chines, as in the case of Rohde’s algorithm, obviously does not
offer the same computational advantages. In fact, one may argue
that when crafting implementations on standard contemporary
computing hardware, it may be better to implement large-scale
similarity matching via some other algorithm, not closely based
on the brain but more closely adapted to the underlying
hardware. Regardless of the particular implementation, though,
the point remains that in many cases, for an algorithm/
architecture to be ‘‘brainlike’’ on a conceptual level, the correct
course is to rely less on complicated searching or analytical
algorithms, and more on simplistic but large-scale similarity
matching against stored information.

_amod_amod

_amod

_subj _obj pp pp

Fig. 2. Framework of RleEx.

R. Lian et al. / Neurocomputing 74 (2010) 95–103 99
3. A computational algorithm for sentence generation via
large-scale glocal similarity matching

The SegSim sentence generation process described in the
Introduction above is quite broad and could be implemented in a
variety of different ways. In this section we describe the one
implementation with which we have experimented, NLGen,
which is based on the RelEx language processing system [20]
that incorporates the Carnegie–Mellon link parser [21].

The particular approach described in this section is not
connectionist in nature; however, it is still strongly neurally
inspired in its overall design and conception; and, after presenting
the particulars of the algorithms involved, we will give some
comments about how it might be realized in a connectionist
manner if one wished.

A note on why we have not taken a connectionist implementa-
tion approach, in spite of the neural inspiration of our algorithm,
may be worthwhile. The main reason is that our goal has been to
draw on neural inspiration to create a highly effective practical NL
generation system. And Rohde’s work does involve some
similarity matching, which is conceptually similar to our
approach; but his design doesn’t provide a scalable mechanism
for similarity matching, nor give a means for similarity matching
to cooperate with more advanced mechanisms like Chomsky’s
Merge [24]. In line with some comments made above, our
contention is that, while a connectionist implementation might
be of intellectual interest, due to efficiency considerations it
would be unlikely to be the best approach in terms of practical
computational linguistics performance on contemporary com-
modity hardware. Furthermore, our knowledge of low-level brain
mechanisms is insufficient to allow us to create a truly
biologically realistic implementation of sentence generation, if
this were our desire.

Recall from the Introduction that SegSim has 5 major aspects:
Fig. 3. Example of a substructure.
1.
 Storage of (syntactic structure, semantic structure) pairs;

2.
 Decomposition of the target semantic structure into a set of

substructures;

3.
 Matching of these semantic substructures against the data-

store of pairs;

4.
 Assembly of fragmentary syntactic structures into series of

sentences; and

5.
 Cleanup, involving insertion of morphology and various

syntactic markers.

Some specific details will be discussed in Section 3.2 below,
after some preliminary material.
3.1. The RelEx framework for natural language comprehension

RelEx is an English-language semantic relationship extractor,
which consists of two components: the dependency extractor and
the relationship extractor (see Fig. 2). It can identify subject,
object, indirect object and many other dependency relationships
between words in a sentence; it generates dependency trees,
resembling those of dependency grammars.

The dependency extractor component carries out dependency
grammar parsing via a customized version of the open-source
Sleator and Temperley’s link parser [21]. The link parser outputs
several parses, and the dependencies of the best one are taken
[20]. The ‘‘Link Parser Representation’’ is the output of the Link
Parser [21], which is documented on the link parser’s website.1
1 http://www.link.cs.cmu.edu/link/
The relationship extractor component is composed of a
number of template matching algorithms that act upon the link
parser’s output to produce a semantic interpretation of the
parse[20]. It contains three steps:
1.
 Convert the Link Parser output to a feature structure
representation.
2.
 Execute the Sentence Algorithm Applier which contains a
series of Sentence Algorithms to modify the feature structure.
3.
 Extract the final output representation by traversing the
feature structure.

A feature structure is a directed graph in which each node
contains either a value, or an unordered list of features. A feature
is just a labeled link to another node. Sentence Algorithm Applier
loads a list of Sentence Algorithms from the algorithm definition
file, and the Sentence Algorithms are executed in the order they
are listed in the file. RelEx iterates through every single feature
node in the feature structure, and attempts to apply the algorithm
to each node. Then the modified feature structures are used to
generate the final RelEx semantic relationships.

3.2. The NLGen framework

As described above, NLGen is an implementation of the SegSim
concept that focuses on sentence generation from RelEx semantic
relationships, as part of the OpenCog AI architecture [2].

http://www.link.cs.cmu.edu/link/

Fig. 4. Linkage of an example.

R. Lian et al. / Neurocomputing 74 (2010) 95–103100
In NLGen, Step 1 is handled in a very simple way using a
relational database. In a later version this may be modified to
utilize the AtomTable semantic network data store provided by
the OpenCog integrated AI framework [2].

The substructure we used in Step 2 is defined by the predicates
of the sentence, i.e. we define one substructure for each predicate,
which can be described as follows:
Predicate (Argumenti (Modifyj))
where 1¼o io¼m and 0¼o jo¼n and m, n are integers;
‘‘Predicate’’ stands for the predicate of the sentence, correspond-
ing to the variable $0 of the RelEx relationship _subj($0, $1) or
_obj($0, $1); Argumenti is the ith semantic parameter related with
the predicate; Modifyj is the jth modifier of the Argumenti.

For instance, given the sentence ‘‘I happily study beautiful
mathematics in beautiful China with beautiful people.’’ The
substructure can be defined as Fig. 3.

If there is more than one predicate, then multiple subnets are
extracted analogously.

For each of these substructures, Step 3 is supposed to match
the substructures of a sentence against its global memory (which
contains a large body of previously encountered [semantic
structure, syntactic/morphological realization] pairs) to find the
most similar or same substructures and the relevant syntactic
relations to generate a set of syntactic realizations, which may be
sentences or sentence fragments. In our current implementation,
the SAGA subgraph matching algorithm [22] has been used to
match the subnets from the parsed corpus at this step.

If Step 3 generated multiple fragments, they must be pieced
together. In Step 4, the Link Parser’s dictionary has been used for
detecting the dangling syntactic links corresponding to the
fragments, which can be used to integrate the multiple fragments.
For instance:

In the example of Fig. 4, according to the last 3 steps, SegSim
would generate two fragments: ‘‘the parser will ignore the
sentence’’ and ‘‘whose length is too long’’. Then it consults the
Link Parser’s dictionary, and finds that ‘‘whose’’ has a connector
‘‘Mr-’’, which is used for relative clauses involving ‘‘whose’’, to
connect to the previous noun ‘‘sentence’’. Analogously, we can
integrate the other fragments into a whole sentence.

Finally, a ‘‘cleanup’’ or ‘‘post-processing’’ phase is conducted,
applying the correct inflections to each word depending on the
word properties provided by the input RelEx relations. For
example, we can use the RelEx relation ‘‘DEFINITE-FLAG(cover,
T)’’ to insert the article ‘‘the’’ in front of the word ‘‘cover’’. We have
considered five factors in this version of NLGen: article, noun
plural, verb intense, possessive and query type (the latter which is
only for interrogative sentences).

In the ‘‘cleanup’’ step, we also use the chunk parser tool from
OpenNLP2 for adjusting the position of an article being inserted.
For instance, consider the proto-sentence ‘‘I have big red apple.’’ If
we use the RelEx relation ‘‘noun_number(apple, singular)’’ to
inflect the word ‘‘apple’’ directly, the final sentence will be ‘‘I have
2 http://opennlp.sourceforge.net/
big red an apple’’, which is not well-formed. So we use the chunk
parser to detect the phrase ‘‘big red apple’’ first, then apply the
article rule in front of the noun phrase. This is a pragmatic
approach which may be replaced with something more elegant
and principled in later revisions of the NLGen system.
3.3. Sketch of a potential connectionist SegSim implementation

We noted above our reasons for not choosing a connectionist
implementation substrate for NLGen, but here we give a few brief
comments regarding how one might go about creating such a
substrate, if one had reason to do so.

In a connectionist approach, storage would be handled roughly
as in Rohde’s CSCP architecture, via training a recurrent neural
network to map appropriate syntactic structures into the
corresponding semantic structures. Division of target semantic
structures into substructures would be done by a specialized
subnetwork; and matching of each of these substructures against
the knowledge base would then be done roughly as in Rohde’s
approach. Assembly of syntactic structures into sentence-series
would then be done via a specialized subnetwork; and cleanup
would be done via recurrent network trained on appropriate
examples.

Overall we suspect this would be a perfectly feasible approach,
but would inject computational inefficiency and additional
complexity as compared to the strategy we have taken in NLGen.
However, we suggest that creating something similar might
become very interesting once the specific of the neural imple-
mentation of sentence generation is better understood. Right now
we don’t really know enough about the low-level operation of
Broca’s area and other relevant brain regions to create a
neurologically-roughly-faithful simulation, but in a decade or
two we may well.
4. NLGen: example results

NLGen is still in a relatively early stage of development, and
does not handle the full range of linguistic and semantic
phenomena that it will when it’s completed. However, it can
already express a variety of sentences encapsulating a variety of
syntactic and semantic phenomena; in this section we will give
some specific examples of what it can do.

The SegSim approach performs sentence generation by
matching portions of propositional input to a large corpus of
parsed sentences, therefore, when the successful matches can be
found in the corpus, it can generate some similar and well-formed
sentences via the relevant syntactic structures.

There currently do not exist any authoritative evaluation
criteria for Natural Language Generation systems. Among many
complicating factors here is the fact that different language
generation systems have different kinds of inputs, depending on
many things including their application area. So it’s complicated
to compare the results of NLGen with those obtained by other
systems.

http://opennlp.sourceforge.net/

Fig. 5. RelEx relationships for Example 1.

R. Lian et al. / Neurocomputing 74 (2010) 95–103 101
It is easier however to test whether NLGen is implementing
SegSim successfully. One approach is to take a sentence, run it
through RelEx to generate a set of relationships, and see if NLGen
can regenerate the sentence from the relationship. We show here
the results of some simple tests of this nature, performed with the
current version of the system using a very small test corpus for
similarity matching. Note: In each of these example results, the
input of NLGen is the RelEx relationships produced by the
sentence before ‘‘) ’’; and the sentence to the right side of
‘‘) ’’ was one of the sentences generated by NLGen.

Example 1. I study mathematics at Xiamen University.

) I study mathematics at Xiamen_University.

Example 2. The red block is next to the blue cup.

) The red block is next_to the blue cup.

Example 3. Ruiting walked from the table to the door.

) Ruiting walked to the door from the table.

Example 4. I intend to walk very slowly from Ben to Ruiting, with
Hugo’s pencil in my hand.

) With Hugo’s pencil in my hand, I intend to walk very slowly

from Ben to Ruiting.

Example 5. I would like you to tell me where the red ball is.

) I tell like you to ’d me where the red ball is.

Example 6. I study at Xiamen University, which is located in
China.

) I study at Xiamen_University.

Example 7. What is next to the tree?

) What is next to the tree?

Example 8. Where is the red ball?

) Where is the red ball?

Example 9. Pass me the ball.

) Pass me the ball.

Example 10. Tell Ben where the red ball is.

) Tell Ben where the red ball is.

To make the process clearer, for Example 1 we also show the
RelEx relationships produced from the sentence before the ‘‘) ’’:

Fig. 5 shows the relationships of Example 1 fed to NLGen as
input. The types of the semantic relationship are documented in
the RelEx’s wiki pages.3

These examples illustrate some key points about the current
version of NLGen. It works well on simple, commonplace
sentences (Examples 1, 2), though it may reorder the sentence
fragments sometimes (Examples 3, 4). On the other hand, because
of its reliance on matching against a corpus, NLGen is incapable of
forming good sentences with syntactic structures not found in the
corpus (Examples 5, 6). On a larger corpus these examples would
have given successful results. In Examples 5, the odd error is due
to the presence of too many ‘‘_subj’’ RelEx relationships in the
relationship-set corresponding to the sentence, which distracts
the matching process when it attempts to find similar substruc-
tures in the small test corpus. Then from Examples 7–10, we can
see NLGen still works well for question sentences and imperative
sentence if the substructures we extract can be matched, but the
substructures may be similar with the assertive sentence, so we
need to refine it in the ‘‘cleanup’’ step. For example: the
substructures extracted for the sentence ‘‘are you a student?’’
3 http://www.opencog.org/wiki/RelEx#Relations_and_Features
are the same as the ones for ‘‘you are a student?’’, since the two
sentences both have the same binary RelEx relationships:
‘‘_subj(be, you)
_obj(be, student)’’
which are used to guide the extraction of the substructures. So we
need to refine the sentence via some grammatical rules in the
post-processing phase, using the word properties from RelEx, like
‘‘TRUTH-QUERY-FLAG(be, T)’’ which means that the referent ‘‘be’’
is a verb/event and the event involved is a question.

The particular shortcomings demonstrated in these examples are
simple to remedy within the overall NLGen framework, via simply
expanding the corpus. However, to get truly general behavior from
NLGen it will be necessary to insert a fairly sophisticated rule-based
generation method to cover those cases where similarity matching
fails, as discussed above. The NLGen2 system created by Blake
Lemoine [23] is one possibility in this regard: based on RelEx and the
link parser, it carries out rule-based generation using an imple-
mentation of Chomsky’s Merge operator. Integration of NLGen with
NLGen2 is currently being considered. We note that the Merge
operator is computationally inefficient by nature, so that it will likely
never be suitable for the primary sentence generation method in a
language generation system. However, pairing NLGen for generation
of familiar and routine utterances with a Merge-based [24] approach
for generation of complex or unfamiliar utterances, may prove a
robust approach. Finally, the possible neurolinguistic analogue of
NLGen2’s Merge operator is a fascinating topic which we may
consider in later research.
5. Conclusion

Language generation is a complex process, and at the current
time we lack a thorough knowledge of either how the human brain
achieves it, or how to achieve it with robust human-level
functionality in software or hardware (whether brain-like in
architecture or otherwise). Here we have outlined a novel approach
to the problem: SegSim, which is based on a combination of local
processing with massively parallel global similarity matching. As a
hypothesis about human neural and cognitive function, SegSim is
compatible with current brain science; and as a guide for
implementation of software systems, SegSim has proved worth-
while via inspiring NLGen, a natural language generation system
that, while still under development, is already yielding interesting
practical results, some of which we have reported here.

http://www.opencog.org/wiki/RelEx#Relations_and_Features

R. Lian et al. / Neurocomputing 74 (2010) 95–103102
Acknowledgement

The authors would like to acknowledge Hugo de Garis, Changle
Zhou and Xiaodong Shi at Xiamen University, for supporting
Ruiting Lian in her work on this project. A debt is also owed to
Karin Verspoor for her inspiration in the early design of the RelEx
language engine; to Jeffrey Epstein for his support of Ben Goertzel
during several phases of the research; to Kirk McMurray for his
support of Linas Vepstas’s work via his role at Cerego; to Borislav
Iordanov for his support of Murilo Queiroz’s work via his role at
Dade County; and to David Stern whose investment in Novamente
LLC helped support Rui Liu’s work. And we are also grateful to the
anonymous reviewers for their many helpful comments.

This work funded in part by Chinese National Science
Foundation Grant # 60975084/F030603.

References

[1] B. Goertzel, J. Pitt, M. Ikle, C. Pennachin, R. Liu, Glocal memory: a design
principle for artificial brains and minds, Neurocomputing, this issue,
doi:10.1016/j.neucom.2009.10.033.

[2] B. Goertzel, D. Hart, OpenCog: a software framework for integrative AGI, in:
Proceedings of AGI-08, IOS Press, 2008, pp. 468–472.

[3] C.R. Fletcher, Levels of representation in memory for discourse, in: M.A.
Gernsbacher (Ed.), Handbook of Psycholinguistics, Academic Press1994,
pp. 589–608.

[4] K. Bock, W. Levelt, Language production: grammatical encoding, in: M.A.
Gernsbacher (Ed.), Handbook of Psycholinguistics, Academic Press1994,
pp. 945–984.

[5] A. Belz, E. Kow, System building cost vs. output quality in data-to-text
generation, in: Proceedings of the 12th European Workshop on Natural
Language Generation (ENLG 2009), pp. 16–24.

[6] Y.W. Wong, R.J. Mooney, Generation by inverting a semantic parser that uses
statistical machine translation, in: Proceedings of Human Language Technol-
ogies: The Annual Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology
(HLT-NAACL 2007), pp. 172–179.

[7] P. Piwek, K. van Deemter, Constraint-based natural language generation: a
survey, Technical Report 2006/03, Computing Department, The Open
University, 2006.

[8] A. Koller, M. Stone, Sentence generation as a planning problem, in:
Proceedings of the 45th Annual Meeting of the Association of Computational
Linguistics, 2007, pp. 336–343.

[9] S. Haller, E.W. Radue, M. Erb, W. Grodd, T. Kircher, Overt sentence production
in event-related fMRI, Neuropsychologia 43 (5) (2005) 807–814.

[10] N.T. Sahin, S. Pinker, E. Halgren, Abstract grammatical processing of nouns
and verbs in Broca’s area: evidence from fMRI, Cortex 42 (4) (2006) 540–562.

[11] C. Ranganath, M.K. Johnson, M. D’Esposito, Prefrontal activity associated with
working memory and episodic long-term memory, Neuropsychologia 41 (3)
(2003) 378–389.

[12] C.J. Fiebach, M. Schlesewsky, G. Lohmann, D.Y. von Cramon, A.D. Friederici,
Revisiting the role of Broca’s area in sentence processing: syntactic
integration versus syntactic working memory, Human Brain Mapping 24
(2005) 79–91.

[13] C.J. Fiebach, R.I. Schubotz, Dynamic anticipatory processing of hierachical
sequential events: a common role for Broca’s area and ventral premotor
cortex across domains, Cortex 42 (2006) 499–502.

[14] J. Kalita, L. Shastri, Generation of simple sentences in english using the
connectionist model of computation, in: Proceedings of the 9th annual
conference of the Cognitive Science Society (Hillsdale, NJ: Lawrence Erlbaum
Associates, 1987, pp. 555–565.

[15] J. Kalita, L. Shastri, A connectionist approach to generation of simple
sentences and word choice, in: G. Adriaens, U. Hahn (Eds.), Parallel Natural
Language Processing, Ablex Publishing, Norwood, NJ1994, pp. 395–420.

[16] M.E. Gasser, A connectionist model of sentence generation in a first and
second language, Unpublished doctoral dissertation, Computer Science
Department, University of California, Los Angeles, CA. (TP UCLA-AI-88-13),
1988.

[17] R. Miikkulainen, in: Subsymbolic Natural Language Processing: An Integrated
Model of Scripts, Lexicon, and Memory, MIT Press, 1993.

[18] D.L.T. Rohde, A connectionist model of sentence comprehension and
production, Ph.D. thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 2002.

[19] D.J. Amit, in: Modeling Brain Function—The World of Attractor Neural
Networks, Cambridge University Press, New York, USA, 1989.

[20] B. Goertzel, H. Pinto, A. Heljakka, M. Ross, I. Goertzel, C. Pennachin Using
dependency parsing and probabilistic inference to extract gene/protein
interactions implicit in the combination of multiple biomedical research
abstracts, in: Proceedings of the BioNLP—2006 Workshop at ACL-2006, (New
York, 2006), pp. 104–111.
[21] D. Sleator, D. Temperley, Parsing English with a link grammar, in:
Proceedings of the Third International Workshop on Parsing Technologies,
1993.

[22] Y. Tian, R.C. Mceachin, C. Santos, D.J. States, J.M. Patel, SAGA: a subgraph
matching tool for biological graphs, Bioinformatics 23 (2) (2007) 232–239.

[23] B. Lemoine, NLGen2: a linguistically plausible, general purpose natural
language generation system, /http://www.louisiana.edu/�bal2277/NLGen2.
docS.

[24] Noam Chomsky, in: R. Martin, D. Michaels, J. Uriagereka (Eds.), Minimalist
Inquiries: The Framework. In Step by Step, MIT Press, Cambridge2000,
pp. 89–155.

[25] R. Granger Richard, Engines of the brain: the computational instruction set of
human cognition, AI Magazine 27 (2006) 15–32.
Ruiting Lian is a Ph.D. student in Artificial Brain Lab,
Xiamen University, China. Research interests: Natural
Language Processing and Artificial Brain.
Dr. Ben Goertzel is a CEO and a Chief Scientist of AI
firm Novamente LLC, a company focused on creating
powerfully intelligent NPC’s for online games and
virtual worlds. He is also a CEO of bioinformatics firm
Biomind LLC, and a Director of Research of the
nonprofit Singularity Institute for AI. Dr. Goertzel is
the originator of the OpenCog open-source AGI frame-
work, as well as the proprietary Novamente Cognition
Engine AGI system. A research faculty for 8 years in
several universities in the US and Australasia, he
remains active in the academic AI community. He is
the Chair of the Steering Committee for the Artificial

General Intelligence conference series, and was the

Conference Chair for AGI-09 which was held in March 2009 in Washington DC. He
currently serves on the Board of the World Transhumanist Association.
Dr. Goertzel has authored eight technical monographs in the computing and
cognitive sciences, published by leading scientific publishers, most recently
Probabilistic Term Logic, published by Springer in 2008; and also edited four
technical volumes. He has also published over 80 research papers in journals,
conferences and edited volumes, in disciplines spanning AI, mathematics,
computer science, cognitive science, philosophy of mind and bioinformatics; and
has developed two AI-based trading systems for hedge funds in Connecticut and
San Francisco. AI software created by his teams at Novamente LLC and Biomind
LLC has been used in numerous government agencies and corporations. Based in
Rockville Maryland, he is married with three children aged 19, 16 and 12; and in
his spare time he writes avant-garde fiction and composes and improvises
experimental keyboard music.

Rui Liu is a Ph.D. student at Wuhan University in
China, with multiple areas of interest and expertise
including evolutionary learning, evolvable hardware,
and financial prediction. He is also an experienced
software entrepreneur and commercial software de-
veloper, and in 2008–2009 did AI software develop-
ment for Novamente LLC.
Michael Ross has a degree in Symbolic Systems from
Stanford University. He is an independent computa-
tional linguistics consultant for clients in the financial,
defense, and health industries. While working for SAIC,
he lead design and development of the RelEx system,
now part of OpenCog. He lives in New York City, and
occasionally contributes to Lingpipe, an open source
natural language processing suite.

http://www.louisiana.edu/∼bal2277/NLGen2.doc
http://www.louisiana.edu/∼bal2277/NLGen2.doc
http://www.louisiana.edu/∼bal2277/NLGen2.doc

R. Lian et al. / Neurocomputing 74 (2010) 95–103 103
Murilo Saraiva de Queiroz, 32, has a degree in
Computer Science and a Masters Degree in Electronics
Engineering, both from Universidade Federal de Minas
Gerais (UFMG, Brazil). He is a partner in Vetta
Labs (http://www.vettalabs.com), a research and de-
velopment company focused on creating innovative
products in areas such as financial markets, bioinfor-
matics, computer vision and natural language proces-
sing. He lives in Belo Horizonte, Brazil, with his wife
and son.
Dr. Linas Vepstas received a Ph.D. in theoretical
physics from SUNY at StonyBrook. Linas has had a
long career computer engineering industry, working
on many areas in software, operating systems and
hardware, strongly supporting open source develop-
ment. He currently pursues research into mathematics
linguistics, and theories of unsupervised learning in
artificial intelligence. When not engaged in intellectual
pursuits, he competes in rowing regattas in his home
town of Austin, Texas.

